The Energetic Cost of Adaptive Feet in Walking

12.9,2011 Seungmoon Song and Hartmut Geyer Robotics Institute Carnegie Mellon University

W911NR-11-1-0098

Related Studies

Variable height (Kang et al., 2010) Variable stiffness (Hashimoto et al., 2010) Toe (Zhang et al., 2010, Zhu et al., 2011)

Stiffness change (Briggs et al., 2001) Ball cushion (Bojsen-Moller et al., 1976) Windlass mechanism (Hicks, 1954)

Baseline foot

Absorbs impacts Provides secure grip

Requires additional muscles Provides less power transfer

(Hicks, 1954 II, Bolgla et al., 2004)

TFL, TEX (Yamaguchi et al., 1990), PF (Gunther et al., 2002), MTJ (Hashimoto et. al, 2010)

Neuromuscular Model

(Geyer et al., 2010)

Neuromuscular Model: Optimization (CMA-ES)

$$J = \left| \dot{x}_{avg} - \dot{x}_{tgt} \right| + P + C_E$$

Neuromuscular Model: Simulation

Result I: Human Feet Incur About 20% More Energetic Cost up to 1.2ms⁻¹

Result II: Passive Feet Reduces the Energetic Cost by 15% or More

Current and Future Directions

Simulation studies to interpret the result

Development of a robotic foot

Conclusion

2. Passive Feet Reduces the Energetic Cost by 15% or more