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Abstract. Humans can generate diverse locomotion behaviors through
the hierarchical control of the supraspinal and the spinal systems, where
the spinal control is often assumed to consist of central pattern generators
and reflexes. It has been demonstrated through simulation that human
walking and running can be generated with control models where the
central pattern generator is controlled in a hierarchical structure. How-
ever, no reflex control model in such framework has been proposed. Here
we propose that locomotion behaviors can be controlled by a hierarchical
control structure where the supraspinal system modulates reflexes with
simple signals. We demonstrate in physics simulation that a simple neu-
romuscular model with a hierarchical reflex control can regulate running
speed and height on unknown terrains with height differences of ±10cm.

1 Introduction

Humans exhibit agile locomotion behaviors such as altering the locomotion speed
and jumping over obstacles as needed. It is widely recognized that such behaviors
are realized through a hierarchical control structure consisting of the supraspinal
and the spinal control layer [1]. Spinal locomotion of decerebrated cats [2] and
other vertebrates [3, 4] demonstrates that large part of the control of normal
locomotion is conducted in the spinal cord. To intentionally control locomotion
behaviors based on environmental cues, it is necessary to modulate the spinal
control through the supraspinal system. Therefore, understanding the mecha-
nism of the spinal control and how it interacts with the supraspinal control is
essential for explaining how legged locomotion is governed in biological systems.

Different types of human neuromuscular control models have demonstrated
stable bipedal locomotion in physics simulation [5–8]. In a previous study, we
have shown with a 3D human neuromuscular model that a reflex-based spinal
control can generate diverse locomotion behaviors, including walking and run-
ning, slope and stair negotiation, and deliberate obstacle avoidance [8]. Each be-
havior has been generated with different set of spinal control parameters, leaving
unexplained how the different sets can be stored and selected by the supraspinal
system. In this study, we explore a simple solution of building a lookup table by
mapping, in prior, all relevant states and control parameter sets. To this end,
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we investigate a simple hierarchical neuromuscular control model, which consists
of a spinal control layer with a single reflex pathway and a supraspinal control
layer with a lookup table of spinal control parameters (Sec. 2). The model can
regulate running speed and height on unknown terrains with height differences of
±10 cm (Sec. 3). The implications of the proposed approach and its alternatives
are discussed (Sec. 4).

2 The Simple Neuromuscular Running Model

2.1 Musculoskeletal System

The mechanical model is a 2D planar system which consists of a 80 kg point mass,
which is the center of mass (COM), and a 1-meter-long massless leg as proposed
in [9] (Fig. 1-a). The leg has two segments with equal lengths lS , where the
upper segment freely rotates around the COM and the lower segment connects
to the upper segment by a revolute knee joint. The virtual leg is defined as a line
connecting the COM and the foot (the distal edge of the lower segment); the leg
length lleg is defined as the distance between the foot and the point mass, and
the leg angle or the angle of attack α is defined as the orientation of the virtual
leg in the inertial frame.

The system dynamics alters between flight and stance phases. During flight,
the COM undergoes a ballistic fall due to gravity g. During stance, the foot is
assumed as a free revolute joint on the ground, and the knee joint is actuated
by a knee extensor muscle resulting in a leg force along the virtual leg Fleg. The
transition from flight to stance occurs if the foot touches the ground, and enters
flight if the virtual leg extends to its nominal length lF . In summary, the COM
dynamics is determined as[

ẍ
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Fig. 1. The simple neuromuscular running model. (a) The mechanical system consists
of a point mass and a segmented massless leg. (b) The knee extensor is modeled as a
Hill-type muscle.
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Table 1. Model parameters.

m 80 kg g 9.81 ms−1 lS 0.5 m
d 0.04 m ϕref 120◦ lref 0.5 m

Fmax 15 kN lopt 0.1 m vmax 12 lopts
−1

lslack 0.4 m τECC 0.01 s ∆t 0.005 s

where during flight |Fleg| is zero, and during stance it is

|Fleg| =
d√

l2S −
(
lleg
2

)2Fm (2)

given the muscle force FM , and the moment arm of the muscle d.
The knee extensor is modeled as a Hill-type muscle-tendon model (Fig. 1-

b). The muscle model consists of a contractile element (CE), a series elastic-
ity (SE), and a parallel elasticity (PE), which together defines the muscle force
FM = FSE = FCE+FPE . SE and PE are passive elements which exert force when
stretched over their reference length lslack and lopt, respectively. CE actively con-
tracts proportional to the muscle activation A as FCE = AFmaxfl(lCE)fv(vCE),
where Fmax is the maximum isometric force which is a constant, while fl(lCE)
and fv(vCE) are the force-length and force-velocity relationship of CE, each de-
fined based on optimum length lopt and maximum contraction velocity vmax,
respectively. The details of how FSE , FPE , fl(lCE), and fv(vCE) are calculated
are described in [9, 7].

We model two sources of signal delays in the spinal reflex control loop:
excitation-contraction coupling and neural transmission delays. The excitation-
contraction coupling is modeled by a 10 ms first-order delay as τȦ = S − A,
where S is muscle stimulation or the output of the neural controller, which has
a value between 0 and 1. Based on observations in human physiology [10], we
model the one way transmission delays between the spinal cord and the knee
extensor as ∆t = 5 ms, i.e. the close loop reflex delay is 10 ms. No transmission
delay between the spinal and supraspinal control system is modeled, since it uses
anticipatable sensory data for control.

The model is implemented in MATLAB Simulink (R2013a), and use ode45
solver. All the parameters used in the model are summarized in Table 1.

2.2 Neural Control

We set the control goal as to regulate the mechanical energy of the system in
both horizontal and vertical axes. This can be formulated as to track the for-
ward velocity and height of COM at apexes [ẋ, y]apex (we drop the subscript apex
in the remainder of this paper). Given such control goal, the neural controller
is hierarchically structured consisting of the supraspinal and the spinal control
layer (Fig. 2). The spinal control is modeled as a local reflex pathway generat-
ing muscle stimulation during stance. The supraspinal controller modulates the
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Fig. 2. Hierarchical control model. The controller consists of a supraspinal and a spinal
control layer. The spinal control is modeled as a reflex pathway which directly interacts
with the musculoskeletal system. The supraspinal control takes the system state and
control goal as inputs and modulates the spinal control by commanding the reflex gains.

spinal control gains to achieve the control goal. During flight, the leg length lleg
is fixed at a constant lF = 0.99 m, and perfectly follows the angle of attack α
commanded from the supraspinal system.

2.3 Spinal Reflex Layer

The spinal control for the knee extensor during stance is defined as a positive
force feedback, adopted from [9]. Positive force feedback has been proposed as
an effective control for realizing compliant stance leg behavior, which is widely
recognized as the basic stance leg behavior of locomotion [11, 12]. Positive force
feedback generates muscle stimulation for the knee extensor S as

S = S0 +GF∆t (3)

where S0 and G are parameters given from the supraspinal system, and F∆t is
muscle force data delayed by 10 ms modeling the closed loop reflex delay. As
stance begins, muscle activation A is set to S0 motivated by the so-called stance
preparation, which stiffens the leg before making contact in human locomotion
[13].

2.4 Supraspinal Control Layer

Our focus on the supraspinal control is to devise a controller that appropriately
modulates the reflex pathway, rather than proposing a specific model in a bi-
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ological form. More specifically, for the supraspinal control, we formulate the
problem as to derive a function which takes control states and goals as input
and outputs the corresponding control gains of the spinal controller such as

[α,G, S0] = u0([ẋ, y], [ẋ, y]tgt) (4)

which can be a lookup table. The table can be constructed by inverting the apex
return map [ẋ, y]i+1 = M([ẋ, y]i, [α,G, S0]), where the subscript i+1 indicates
the next apex of i. We further modify the control so that 1) the number of
output matches the number of control states, and 2) the model can negotiate
rough terrain without knowing it in prior. We derive such control in three steps.

First, we build the full return map [ẋ, y]i+1 = M([ẋ, y]i, [α,G, S0]) by simu-
lating the spinal-musculoskeletal model. The range and resolution of the indexes
are ẋ = 0 : 0.2 : 10 ms−1, y = 0.8 : 0.01 : 1.1 m, α = 40◦ : 1◦ : 110◦,
G = 0 : 0.2 : 10 Fmax, and S0 = 0.01, 0.02 : 0.02 : 0.3. Since there are two states
and three control variables, we explore if we can drop a control variable with-
out reducing much of the control capability. As a rough estimate of the control
capability, we considered the area in the state space where fixed points exist.
In Fig. 3, the area in the state space where fixed point exists with any S0 are
marked in gray, and the area with S0 = 0.01, 0.1, 0.2, 0.3 are marked in black in
each subplots. It shows that fixed points found with S0 = 0.01 covers over 70%
of that found with 0.01 ≤ S0 ≤ 0.3, and it reduces as S0 increases. Therefore,
we choose to keep S0 as a constant value 0.01.
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Fig. 3. Fixed points. The graph shows the state space, where the gray area (which is a
super set of the black areas) indicates where fixed points exist with the spinal control
of 0.01 ≤ S0 ≤ 0.3. Black areas of each graph shows the fixed points for S0 =0.01, 0.1,
0.2, and 0.3, respectively.
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The second step is to invert the return map and derive the control table

[α,G] = u|S0=0.01([ẋ, y], [ẋ, y]tgt). (5)

For this, we discretize [ẋ, y]i+1 into [ẋ, y]tgt with multilinear interpolation.
When the model touches the ground, the previous apex height relative to the

ground height can be calculated as

y =
1

2
gt2fall + lF sin(α) (6)

where falling time tfall is the time passed since the previous apex [14]. Using this
property, controller Eq. 5 can be converted to a version that continuously updates
the output [α,G] during flight based on the falling time, so that whenever the
model touches the ground the output is set to the correct values. Therefore, the
final controller

[α,G] = u([ẋ, tfall], [ẋ, y]tgt) (7)

blindly adapts to unknown terrains.
For cases when [ẋ, y]tgt is not reachable at one step, we define control prior-

ities as
p1 : argminu|yi+1 − ytgt| (8)

p2 : argminu|ẋi+1 − ẋtgt| (9)

where p1 has higher priority than p2. In other words, the controller tries to
achieve apex height goal yi+1 ≈ ytgt close as possible, then target speed, because
maintaining apex height is more important in surviving (or not falling down) on
rough terrains.

In summary, the supraspinal control is devised as a four dimensional lookup
table where each element contains values for [α,G]. At flight, forward velocity
is constant which specifies a three dimensional subspace. Target states [ẋ, y]tgt
together with the contraints Eq. 8 and 9 only leaves tfall undetermined. As falling
from apex., tfall is tracked and the corresponding [α,G] values are commanded
to the spinal reflex control.

3 Results

The performance of the control on rough terrains should be evaluated with statis-
tical methods, since individual trials depend on the pattern of terrains. We leave
quantifying the performance as future work, and here note that, for most trials
(≥ 90%), the model could control the COM states on terrains with maximum
height differences of ±10 cm (Fig. 4).

Theoretically, on flat ground, the proposed hierarchical controller can control
the apex states at least within the black area shown in Fig. 3. However, simula-
tion results show that the model cannot accelerate over 7 ms−1. This is because
we discretized target states at Eq. 5, which means the minimum acceleration the
model can make is ∆ 0.2 ms−1apex−1. Under 7 ms−1, the model can reach any
state in about 5 ∼ 10 steps.
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2 ms-1 0 ms-1 4 ms-1

Fig. 4. Blind running on unknown terrain. The model can control the running speed
and height on unknown terrains. The model starts at 2 ms−1, decelerates to 0 ms−1,
and accelerates to 4 ms−1. The height differences of the ground is between ± 10 cm.
The black dots trace the COM trajectory with 50 ms intervals, and the snapshots of
the model is taken every 500 ms, where the blue line indicates the virtual leg during
swing.

4 Discussion

We proposed a hierarchical control for running, where the supraspinal system
modulates the spinal reflex gains. With the controller a simple musculoskeletal
system can blindly run on rough terrains with height differences of ±10 cm.
Such result suggests that the reflex network in the spinal cord can be modulated
by simple signals from the supraspinal system, and such modulation might be
enough to generate diverse locomotion behaviors. In the presented work, the
supraspinal control is devised as a lookup table. Whether the supraspinal system
of humans operates as a lookup table is unclear. However, it is clear that a
lookup table style control has limitations in the aspect of generalization. For
instance, to apply such control for walking, we need to construct the table in prior
independent from what we already have for running. On the other hand, if one
can identify the relationship between the control outputs and the inputs of the
running control table [15], then it can be tested if that relationship is applicable
to new scenarios. In addition, the lookup table approach is susceptible to the
so-called curse of dimensionality. Humans have much more states and spinal
control parameters than the simple model. For example, the 3D human model
in our previous study has about 50 states and 80 spinal control parameters [8].
To approximate the mapping for such high dimensional system, we can resort to
machine learning techniques, such as value iteration and polity iteration. Such
techniques have been applied in controlling simulation legged characters [16].
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