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Abstract— Walking controllers for bipedal robots have not yet
reached human levels of robustness in locomotion. Imitating the
human motor control might be an alternative strategy for gen-
erating robust locomotion in robots. We seek to control bipedal
robots with a specific neuromuscular human walking model
proposed previously. Here, we present a virtual neuromuscular
controller, VNMC, that emulates this neuromuscular model to
generate desired motor torques for a bipedal robot. We test
the VNMC on a high-fidelity simulation of the ATRIAS bipedal
robot constrained to the sagittal plane. We optimize the control
parameters to tolerate maximum ground-height changes, which
resulted in ATRIAS walking on a terrain with up to ±7 cm
height changes. We further evaluate the robustness of the
optimized controller to external and internal disturbances. The
optimized VNMC adapts to 90% of random terrains with
ground-height changes up to ±2 cm. It endures 95% of ±30 Ns
horizontal pushes on the trunk, and 90% of 8 Ns backward and
4 Ns forward impulses on the swing foot throughout the gait
cycle. Furthermore, the VNMC is resilient to modeling errors
and sensor noise much larger than the equivalent uncertainties
in the real robot. The results suggest VNMC as a potential
alternative to generate robust locomotion in bipedal robots.

I. INTRODUCTION

State of art locomotion controllers enable bipedal robots
to walk outside the laboratory environment [1]–[4]. A typical
controller takes high-level goals from a footstep planner, uses
a simple dynamics model to plan the corresponding center of
mass (COM) trajectories, and generates target joint torques
of the full robot that realize these trajectories [5]. Recent
implementations of this approach replan the footsteps online
to react to unexpected disturbances [1], or account for the
full dynamics of the robot to calculate desired joint torques
[3], [6]. Other controllers employ more heuristic policies to
overcome unexpected disturbances. For example, intuition-
based policies that adjust the step length, leg thrust, and trunk
lean have demonstrated stable locomotion [2], [7]. Despite
these advances, walking controllers have not yet reached the
robustness of human control in locomotion, which makes it
difficult to use bipedal robots in scenarios such as rescuing
lives from natural and man-made disasters.

An alternative control strategy is to imitate the human
control of locomotion. Although the human control is not
fully understood, various neuromuscular models have been
proposed to explain fundamental control mechanisms of
human locomotion [8]–[12]. For instance, it has been demon-
strated in physics simulations that neural controllers, consist-
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Fig. 1. Virtual neuromuscular control for bipedal robot locomotion. An
emulated neuromuscular model is mapped to a robot topology (ATRIAS
pictured) to generate desired motor torques.

ing of central pattern generators and muscle reflex modules,
can generate stable 3-D walking [9], [12]. Corresponding
bioinspired controllers have been developed to generate
walking in humanoid robots [13]–[16]. They demonstrate
stable walking with tolerance to moderate disturbances and
are often used for miniature humanoid robots [15], [16].
However, the existing bioinspired walking controllers do
not demonstrate locomotion that is more robust than the
aforementioned robotic controllers.

Here, we seek to control a bipedal robot ATRIAS with a
specific neuromuscular human walking model we previously
proposed [12] (Fig. 1). This model can generate robust
3-D locomotion on rough terrain (unexpected ground-height
changes of ±10 cm), resist external pushes (8 – 86 Ns), and
generate diverse locomotion behaviors in simulation. How-
ever, it is unclear whether the robust locomotion observed
in the simulation transfers to the physical robot, since the
dynamics of ATRIAS are significantly different from human
dynamics, and sensor noise and actuator saturation may limit
performance.

This paper reports on preliminary work of adapting the
neuromuscular model as a controller for ATRIAS in simu-
lation. The simulation platform models the existing experi-
mental testbed of ATRIAS constrained to the sagittal plane
by a boom (Sec. II). We develop a virtual neuromuscular
controller, VNMC, that emulates the neuromuscular model
and maps the model to the ATRIAS geometry to generate
desired motor torques (Sec. III-A). We optimize the control
parameters for maximum ground-height changes (Sec. III-
B), which results in ATRIAS walking on a terrain with
±7 cm height changes. We analyze this walking behavior
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TABLE I
SEGMENT PROPERTIES OF ATRIAS AND A HUMAN MODEL [12]

trunk upper leg lower leg foot
COM

mass length mass length mass length height mass
to hip

ATRIAS 10 57.9 50 1.1 50 1.0 - - -
human model 35 53.5 46 8.5 46 3.5 20 8 1.25

(unit: cm, kg)

and the robustness of the controller to external and internal
disturbances (Sec. IV). The optimized VNMC tolerates 90%
of the terrains with ground-height changes up to ±2 cm. It
endures 95% of ±30 Ns horizontal pushes on the trunk, and
90% of 8 Ns backward and 4 Ns forward impulses on the
swing foot through out the gait cycle. In addition, the VNMC
is resilient to modeling errors and sensor noise much larger
than the corresponding uncertainties in the real robot. The
results suggest that the VNMC is a potential alternative to
generate robust locomotion in bipedal robots. We discuss
the limitations of the current implementation of VNMC and
potential outcomes of our work (Sec. V).

II. ATRIAS SIMULATION PLATFORM

ATRIAS is a human-size (1-m leg length and 63-kg body
weight) bipedal robot that is designed to concentrate the mass
at the trunk [17], which results in segment dynamics different
than those of humans (Table I). Each of ATRIAS’ legs is a
lightweight four-bar linkage that makes point contact with
the ground. Two series elastic actuators (SEAs) located at
each hip joint drive the four-bar linkage in the sagittal plan.
A third gear-motor controls the leg in the frontal plane, which
can be used for 3-D locomotion.

In this study, we use a high-fidelity simulation of the
ATRIAS platform constrained in the sagittal plane, which
was developed and tested in a previous study [18] (Fig. 2,
Matlab Simulink/SimMechanics R2014b). The ATRIAS
model has 10 internal degrees of freedom (4 for the four-bar
linkages, 4 for the SEAs, and 2 for the frontal plane motors).
In addition, a boom constrains ATRIAS to a circular track,
while the trunk is allowed to pitch. The frontal plane motors
are regulated to keep both legs in the sagittal plane. Further-
more, the simulation includes the detailed SEA dynamics and
control (max torque: 350 Nm), and dynamic ground contact
models that capture stick-slip friction. While we simulate
the continuous dynamics of the physical system with a
variable time-step solver (ode45, relative error tolerance:
1e-3, absolute error tolerance 1e-4), the control loop runs
discretely at 1 kHz to match the control frequency of the
actual robot. The simulation includes the encoders used to
estimate the position and orientation of the trunk, internal
joint angles, and SEA motor torques.

III. VIRTUAL NEUROMUSCULAR CONTROL
A. Virtual Neuromuscular Controller

The virtual neuromuscular controller (VNMC) simulates
a neuromuscular model to derive desired joint torques
of the ATRIAS robot for walking (Fig. 3). The robot’s

Fig. 2. Simulation of the 2-D experimental testbed of ATRIAS. The
top right picture shows the actual testbed of ATRIAS constrained to a
circular track by a boom. We use a high-fidelity simulation of this testbed
to investigate virtual neuromuscular control.

trunk lean, forward velocity, joint angles and joint torques
(θr, vr,ϕr, τr) are mapped to virtual measurements required
to simulate the neuromuscular model, which are the trunk
lean, forward velocity, joint angles, loading force on the
legs, and the foot-contact information (θv, vv,ϕv, fv, cv).
The neuromuscular model outputs virtual joint torques (τv)
that are mapped to desired robot joint torques (τ̂r), which
are then tracked by the SEA controller.

The neuromuscular model of the VNMC is adapted from
the sagittal hip and knee components of the human control
model in [12]. The model includes a skeletal system, muscle-
tendon units, and a neural circuitry. The skeletal system
is a kinematic chain that comprises the trunk, thigh and
shank segments connected by the hip and knee joints. The
skeletal system is synchronized with ATRIAS, in that the
trunks, hips and the feet are collocated. Monoarticular and
biarticular muscles generate virtual torques around the hip
and knee joints. The neural circuits control the virtual
muscles by generating muscle stimulations based on the
neural sensory data from the musculoskeletal system. We
treat the neuromuscular model as a black box that generates
virtual joint torques based on the virtual measurements,
τv = τv (θv, vv,ϕv, fv, cv). (See [12] for details on the
control circuitry.)

The remaining part of the VNMC converts the sen-
sory data of the robot to the virtual measurements,
Φϕ: (θr, vr,ϕr, τr)→ (θv, vv,ϕv, fv, cv), and the virtual
torques to desired robot joint torques, Φτ : τv → τ̂r. The
trunk lean and the forward velocity of the virtual skeleton
are identical to that of ATRIAS, {θv, vv} = {θr, vr}. The
remaining measurements are converted through geometric
transformations. The joint angles of the skeletal system,
ϕv =

(
ϕR1
v , ϕR2

v , ϕL1v , ϕL2v
)
, are mapped from the joint an-

gles of the robot, ϕr =
(
ϕR1
r , ϕR2

r , ϕL1r , ϕL2r
)
. For instance,

the kinematic relation for the joints of the right (R) leg is

ϕR1
v =

1

2

(
−π + ϕR1

r + ϕR2
r + ϕR2

v

)
(1)

ϕR2
v = 2 sin−1

(
lr
lv

cos

(
ϕR2
r − ϕR1

r

2

))
(2)
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Fig. 3. Virtual neuromuscular controller on ATRIAS. The encoders on the ATRIAS model measure the states of the robot used by the VNMC. The SEA
controller tracks desired torques to drive the ATRIAS model. The desired torques are generated by VNMC, which simulates a neuromuscular model that
is mapped to the robot geometry.

where lr and lv are the segment lengths (the thigh and shank
are equal in length) of the robot and virtual legs, respectively.
We model mechanical limits of ATRIAS that prevent the
right hand side of Eq. (2) from reaching singularity. (All
the mappings are the same for the left leg.) The loads on
the legs, fv =

(
fRv , f

L
v

)
, are the components of the ground

reaction forces that act in the direction from the feet to the
hips. These are estimated, assuming quasi-static equilibrium,
from the robot joint torques, τr =

(
τR1
r , τR2

r , τL1r , τL2r
)
, as

fRv =
τR1
r − τR2

r

2 lr sin
(
ϕR2

r −ϕR1
r

2

) . (3)

The boolean vector, cv =
(
cRv , c

L
v

)
, indicates whether

the legs are in contact with the ground. We assume a
contact is made if the leg force (fRv or fLv ) exceeds
25% of body-weight. Finally, the virtual joint torques,
τv =

(
τR1
v , τR2

v , τL1v , τL2v
)
, are mapped to desired robot ac-

tuator torques, τ̂r =
(
τ̂R1
r , τ̂R2

r , τ̂L1r , τ̂L2r
)
, as

[τ̂R1
r , τ̂R2

r ]T = ΦTτ [τR1
v , τR2

v ]T (4)

using the Jacobian

Φτ =

[
1+k
2

1−k
2

k −k

]
(5)

between virtual and robot joint velocities with

k =
lr sin

(
ϕR2

r −ϕR1
r

2

)
lv cos

(
ϕR2

v

2

) . (6)

The virtual knee angles (ϕR2
v and ϕL2v ) are saturated at

179 deg to avoid singularity in Eq. (6), and the desired
torques (τ̂r) are saturated at the maximum actuator torques,
±350 Nm.

B. Optimization of the VNMC parameters

We optimize the control parameters, p ∈ Rn (n = 50),
of the black box neuromuscular model to generate robust

walking. Specifically, we simulate ATRIAS walking on a cir-
cular track with one-meter-long flat ground tiles of randomly
varying heights and use optimization to find the largest height
difference |∆hmax| that ATRIAS successfully traverses. For
that purpose, we construct the cost function as

J(p, |∆hmax|) =

{
dtgt − dwalk, if dwalk < dtgt
− |∆hmax| , otherwise

, (7)

where dtgt is a target travel distance (dtgt = 30 m
≈ 2.5 laps), and dwalk is the distance the model walks
before falling. The cost function was designed considering
two possible simulation outcomes: falling and completing
the course. First, if the model fails to reach the target
distance (dwalk < dtgt), the cost decreases the further the
model walks. Second, if the model successfully traverses
the track (dwalk ≥ dtgt), the cost decreases as the largest
ground-height change (|∆hmax|) increases, which is also
an optimization parameter. The initial seed parameters for
optimization were hand-tuned on flat terrain (not presented
in this paper). We use the covariance matrix adaptation
evolution strategy [19] to optimize the control parameters
for minimum cost.

IV. RESULTS
A. Optimized Walking for Rough Terrain

With the optimized VNMC, ATRIAS can walk on a terrain
with maximum height differences of ±7 cm (see accom-
panying video). Figure 4 shows kinematic and kinetic data
for 13 seconds of this walking behavior, during which the
robot traverses the maximum height changes. The robot gains
and loses forward velocity (vr) as it descends and ascends
the tiles, respectively. The trunk lean (θr) and step length,
which are recognized as important factors in controlling
walking speed [20], [21], show a close trend with the forward
velocity. During the first few steps, vertical ground reaction
forces (GRFs) show the characteristic double-hump pattern
of human walking. In the later steps, the GRFs show chatter,
which seems to emerge from the vibration of the swing leg.
If the swing leg oscillates, the stance control attempts to
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Fig. 4. Kinematic and kinetic data while walking on rough terrain. The top panel shows snapshots projected to a 2-D plane of ATRIAS every 1 second
walking on a ± 7cm terrain. The panels below show the forward velocity vr , trunk lean θr , step length, right leg ground reaction forces (gray: left leg;
scaled to body weight (BW)), right leg joint angles ϕR1

r and ϕR2
r (gray: left leg), and right leg desired joint torques τ̂R1

r and τ̂R2
r (magenta: SEA torques).

Stance phases of the right leg are marked by gray background.

compensate it by producing similar oscillating torques that
propagate to the GRFs. Since this undesired behavior is not
observed in the original human neuromuscular model, it may
originate in the SEA dynamics and the discretized controller.
Nevertheless, VNMC adapts to the unobserved terrain by
modulating the forward velocity, step lengths, gait periods,
and joint trajectories.

B. Robustness Test of the Optimized VNMC

We evaluate the robustness of the optimized VNMC by
simulating a variety of disturbances that are typical in a real-

world environment, including ground-height disturbances
and external pushes. In addition, we examine the controller
tolerance to modeling error and sensor noise.

We assess the robustness of the controller against ground-
height disturbances by evaluating the success rate of travers-
ing sets of random terrains with different levels of difficulty.
We test on 10 sets of terrains with varying ground-height.
Each set consists of 100 random 30-meter-long terrains with
a common maximum ground-height change (|∆hmax|) that
ranges from ±1 cm to ±10 cm across the sets. We count the
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Fig. 5. Robustness to rough terrain. Shown are the percentage of success
(black line), backward fall (red dashed line), and forward fall (blue dashed
line) in walking trials over sets of terrains with maximum ground-height
differences |∆hmax| of ±1 cm to ±10 cm.

trials for which ATRIAS successfully traverses the terrains of
each set (Fig. 5). The success rate is over 90% up to ±2 cm
terrains, significantly decreases to 50% at ±3 cm, and is zero
for all the terrains over ±7 cm. Up to ±7 cm terrains, the
robot tends to fall backward often losing forward momentum
while walking up the terrains. We speculate that the absence
of the ankle joint, which provides large forward propulsion in
the original human model [21], limits the robustness against
ground disturbances. In addition, the original neuromuscu-
lar model modulates the trunk lean to generate additional
propulsion [21]; however, the COM of ATRIAS’ trunk is
close to the hip, which attenuates the effect of this strategy.
For terrains with larger height changes (|∆hmax| ≥ 8 cm),
the proportion of falling forward increases. This is because
ATRIAS more often kicks the vertical face of the tiles, which
causes the robot to trip forward.

In addition to studying rough ground locomotion, we test
the controller against external pushes to the trunk and the
swing foot while walking on flat ground. First, we apply
constant horizontal forces ranging from [−1000, 1000] N for
100 ms on the COM of the trunk at different phases of the
gait cycle. We test for 20 different strides and evaluate the
success rate (Fig. 6-A). The controller endures about 95%
of ±30 Ns pushes throughout the gait cycle. In general, it
can withstand larger backward pushes than forward pushes.
It can also tolerate larger pushes around heel strike, which is
when the kinetic energy of the robot is maximal during the
gait cycle (refer to vr data in Fig. 4). Second, we conduct
a similar experiment on the swing foot with forces ranging
from [−600, 600] N (Fig. 6-B). The robot can resist about
90% of the impulses of −8 Ns and +4 Ns. The controller is
more robust to forward impulses during early swing, since
the swing foot accelerates forward at this phase in normal
walking. To backward impulses, it is most robust during mid-
swing when the forward velocity of the foot is maximal.
The left leg is more sensitive than the right leg to backward
pushes during late swing. This asymmetry is likely due to
the circular track, which already forces the left leg (the inner
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Fig. 6. Robustness to external pushes. (a) Success rate for horizontal
impulses to the trunk COM for the range of [−100, 100] Ns with 10 Ns
resolution for every 10% of the gait cycle. (b) Success rate for horizontal
impulses to the swing foot in the range of [−60, 60] Ns with 4 Ns resolution.

leg) to swing less than the right in nominal walking.
We also evaluate the resilience of the optimized VNMC

against internal disturbances: modeling errors and sensor
noise (Table II). For modeling errors, we find the range of
trunk and leg inertias and the SEA spring properties for
which the robot can maintain walking. In general, VNMC
is resilient to modeling errors. For example, it can withstand
three times increased leg inertia and five times stiffer SEA
springs. Based on a previous study with the simulation and
hardware of ATRIAS [18], the uncertainties in the actual
dynamic properties are much less than the modeling errors
VNMC tolerates. Similarly, we add Gaussian noise to the
encoder signals until the robot falls down, and VNMC
withstands sensor noise much larger than that expected in
the actual robot. The robot walks with up to σ = 0.1 deg
of noise in all ten encoders that measure internal DOFs,
which is much larger (×1e6) than the error of the 32-bit
encoders on the robot. The VNMC is insensitive to the
global frame measurements used in the control, which are
the trunk lean (θr) and forward velocity (vr) (Table II). This
indicates that the controller does not require high-fidelity
accelerometers and gyroscopes to measure this data. On the
other hand, it implies that the optimized VNMC does not
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TABLE II
SENSITIVITY TO MODELING ERRORS AND SENSOR NOISE. DYNAMIC

PROPERTIES ARE THE MASS AND INERTIA OF THE TRUNK AND LEGS,
AND THE ELASTICITY AND DAMPING OF THE SEA SPRINGS.

dynamic min ... max noise max σproperties
trunk 80% ... 140% ϕr 0.1 deg
leg 30% ... 330% θr 27.5 deg

SEA spring 80% ... 560% vr 102 ms−1

fully use the functionalities of the original neuromuscular
control, which stabilizes the trunk and modulates the foot
placement based on these measurements. Perhaps the VNMC
would be more robust by taking full advantage of these
control functionalities.

V. SUMMARY AND FUTURE DIRECTION

In this paper, we proposed a virtual neuromuscular con-
troller, VNMC, to generate robust walking for the bipedal
robot ATRIAS. VNMC simulates a human neuromuscular
model, and maps the model to ATRIAS to generate desired
joint torques. We optimized the control parameters to tolerate
maximum ground-height changes, which resulted in ATRIAS
walking on a ±7 cm terrain. We tested the resulting con-
troller against external and internal disturbances. Using the
controller, ATRIAS tolerates about 90% of the terrains with
ground-height changes of ±2 cm. It endures 95% of ±30 Ns
horizontal pushes on the trunk, and 90% of 8 Ns backward
and 4 Ns forward impulses on the swing foot throughout
the gait cycle. In addition, VNMC is resilient to modeling
errors and sensor noise much larger than the equivalent
uncertainties in the real robot. The results suggest VNMC
as a potential alternative to generate robust locomotion in
bipedal robots.

The current VNMC is less robust than the original neu-
romuscular human model, which tolerates over ±20 cm in
2-D [22]. We speculate that three main reasons account for
this reduction in performance. First, the segment properties
of the robot are different from that of humans. For example,
ATRIAS does not have feet which generate large propulsion
in the human model (Sec. IV-B). Second, the SEA dynamics
and the discretized control loop seem to cause undesired high
frequency oscillations in the walking motion (Sec. IV-A).
Third, the VNMC does not seem to use the full functionality
of the original neuromuscular control model (Sec. IV-B).

We plan to address the latter two problems in future
work, and transfer the VNMC to the ATRIAS experimental
setup. Our immediate goal is to demonstrate and evaluate
the control in the 2-D testbed. Eventually, we aim to extend
VNMC to generate 3-D locomotion in bipedal robots.
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