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Abstract— Versatile models of human locomotion control can
elicit new ideas for the control of legged robots and provide
simulation test-beds for walking assistive robots. There exist
neural control models that can generate human-like diverse and
robust locomotion behaviors. However, most of these behaviors
have been generated by extensive search on low-level control
parameter sets, which is time consuming and limits the general
applicability of the models. Our goal is to identify a hierarchical
structure in neuromuscular control that allows to generate a
large range of behaviors with a few high-level inputs. In this
study, we focus on running. We incorporate a higher-layer speed
adaptation policy to a previously proposed neuromuscular
human model and find that it enables the model to run at
speeds ranging from 2.4 to 4.0 ms−1 by changing only the
target velocity. However, the speed changes occur slowly, and
we investigate simple strategies that facilitate them. Among the
strategies we explore, modulating the trunk lean shows fast
and reliable acceleration and deceleration in average of 0.35
and -0.37 ms−2, respectively. The results show that the running
speed of the neuromuscular model can be controlled to some
extent with a higher-layer speed adaptation policy and a simple
speed changing strategy. We plan to extend this framework to
generate a larger range of locomotion behaviors with a few
high-level commands.

I. INTRODUCTION

Human locomotion control models have the potential
to elicit new controllers for legged robots and to provide
simulation platforms for testing walking assistive devices.
The early models of human locomotion control consist of
central pattern generators (CPGs) that produce the basic
muscle activation rhythms and local reflexes that modulate
the muscle activations and the CPGs to adapt to the envi-
ronment [1]–[3]. Such control structure can generate steady
walking and running in a human musculoskeletal simulation
[3]. Recently, it has been shown that a control model with
only reflexes and no CPGs can generate walking close to
human kinematics, dynamics and muscle stimulations [4].
More recently, the model has been extended to generate
robust and diverse 3D human locomotion behaviors [5].
Since the model can generate human-like walking and is
robust to external disturbances, it has been adapted to control
prosthetic legs [6], [7] and bipedal robots [8]; to test walking
assistive devices in simulation [7], [9], [10]; and also to
generate graphical characters that walk and run like humans
[11], [12].

Changing locomotion speeds and gaits is essential in
human locomotion. The reflex-based control model can gen-
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erate diverse locomotion behaviors and transitions between
those behaviors by using different sets of control parameters
[5]. For example, the walking speed can be controlled with
pre-explored look-up tables of the control parameters [13].
However, it does not seem to be compelling that humans
store look-up tables of hundreds or thousands of low-level
control parameters for all different environments and behav-
iors; there should be high-level policies that generalize the
modulation of the low-level parameters. Some recent studies
have proposed that CPGs may play a role in this aspect
in human locomotion [14], [15]. For instance, it is shown
that by modifying the reflex-based model to control the hip
muscles with CPGs and by incorporating a higher-level speed
control policy that modulates the lower-level parameters, the
walking speed could be successfully controlled by a single
command of the target velocity [15].

Here, we investigate how capable the previously proposed
neuromuscular controller [5] is in controlling running speeds.
Using parameter optimization, we show that the model can
generate steady running at different speeds between 2.4∼4.0
ms−1 (Sec. III-A). We incorporate a linear speed adaptation
policy that allows the model to realize these running speeds
with a single command of the target velocity (Sec. III-B). In
addition, we investigate simple strategies that facilitate speed
changes. Among the strategies we explore, modulating the
trunk lean shows best performance (average acceleration and
deceleration of 0.35 and -0.37 ms−2, respectively) (Sec. III-
C). We also discuss the limitations of the current study which
we plan to address in the future (Sec. IV).

II. NEUROMUSCULAR HUMAN RUNNING
MODEL

A. Neuromuscular Human Locomotion Model

We use a sagittal plane neuromuscular human locomotion
model adapted from the 3D model proposed in [5] with
minimal changes (Fig. 1). The model includes the skeletal
segments, the muscle-tendon actuators, and the reflex-based
neural controller. The skeletal system consists of 7 rigid
segments (trunk, thighs, shanks, and feet) constrained to the
sagittal plane, where each leg is actuated by 9 monoarticular
and biarticular muscle-tendon units (MTUs). The MTUs
exert contraction forces (which are converted to joint torques)
based on the muscle dynamics [4] and the stimulation signals
(Sm) commanded from the neural controller. The neural
controller takes the muscle states (xm), the global trunk
lean angle (θ), the load on the legs (fl), and the binary
foot-ground contact information (zc) as inputs (which are
time-delayed based on the neural transmission delays) and
generates muscle stimulation signals. All the properties of
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Fig. 1. Speed controller of the neuromuscular human locomotion model.
The speed controller modulates the neural controller to control running
speeds with a single command of the target velocity.

the segments, MTUs, and the neural transmission delays are
identical to those in [5].

The human model interacts with the ground through
contact points located at each ball and heel of the foot. When
a contact point engages with the ground, ground reaction
forces (GRFs) act on the point. The GRFs are calculated as
nonlinear spring-damper forces either in stiction or sliding
mode [4].

B. Running Speed Controller

In this paper, we treat the reflex-based neural controller
as a black box controller that consists of n = 64 control
parameters, wn×1. Given the black box neural controller, we
focus on adapting to different running speeds by modulating
the control parameters linear to the target running speed and
facilitating speed changes with additional speed changing
strategies (Fig. 1).

1) Reflex-based neuromuscular running controller: To
this end, we first explore the capability of the neuromuscular
human locomotion model for running (Sec. III-A). The
model does not generate stable running gait in 3D, which
is speculated to be caused by the lack of a yaw stabilizing
mechanism [5]. If such speculation is correct, the model
should be able to generate stable running in the sagittal plan;
however, this is not verified. Therefore, we investigate if the

sagittal plane model can generate stable running, and explore
the range of running speeds by searching different sets of
control parameters, w, for different speeds.

2) Speed adaptation policy: Then, we investigate if the
model can adapt to different running speeds with a simple
policy that modulates the neural control parameters, w, based
the target speed (Sec. III-B). We select a policy that sets w
linear to the target running speed, vtgt, as

w = K ·
[

1
vtgt

]
. (1)

(Not as in [13], [15], we do not select key parameters from w
that show strong trends for different speeds. Analyzing and
interpreting the trend of individual neural control parameters
are beyond the scope of this paper.) We search for a speed
adaptation policy Kn×2 that works for the range of running
speeds explored in Sec. II-B.2. Once Kn×2 is set, the
model would be able to generate steady running behaviors
at different speeds by simply changing the target velocity
vtgt, opposed to changing the entire parameter set w (which
would require a large look-up table). We further investigate
if the model can change the running speed with the identified
linear policy.

3) Speed changing strategies: Lastly, we propose and
investigate potential strategies that facilitate speed changes
(Sec. III-C). Specifically, we propose simple strategies that
modulate either a joint torque or a control parameter of
the neural controller linearly proportional to the difference
between the current and the target running speed (∆v =
vtgt − vstep, where vstep is the average velocity during the
previous step). The first strategy (C1) is modulating the hip
torque (∆c1 = ∆τh) during the stance phase, where hip
extension torque is expected to accelerate the body forward
[16], [17]. The second and third strategies (C2,3) modulate
the knee and ankle torques (∆c2 = ∆τk and ∆c3 = ∆τa)
during the late stance phase (xpelvis > xstance ankle), when
the leg thrust contributes to forward propulsion. The last
two strategies (C4,5) modulate the foot placement (or the
swing leg angle α) and the trunk lean (θ) through the high-
level control parameters of the neural controller (∆c4 =
∆αtgt and ∆c5 = ∆θtgt; α and θ shown in Fig. 1). The
foot placement show high correlation with speed changes
in human running [17], and modulating the trunk lean is
understood as an effective strategy for controlling walking
speed [13], [18].

C. Parameter Optimization

We use optimization to search for parameter values.
Specifically in each optimization trial we use the covariance
matrix adaptation evolution strategy (CMA-ES) [19] to find
the values that define the neural control parameters w64×1,
the speed adaptation linear policy K64×2, or the modulation
intensity for speed change ∆c1∼5. For optimizing w and
K, we set the population size of 64 and maximum of 400
generations of evolution in CMA-ES that takes about 2 days
in a modern desktop. For ∆c1∼5, we set the population size
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Fig. 2. Neuromuscular physics simulation over rough terrain. The figure shows the snapshots of the human model every 400 ms while running at 3 ms−1

across a terrain that includes 10 m of moderate roughness section.

of 8 and maximum of 400 generations, which takes a few
hours.

To formulate the parameter searching process as an opti-
mization problem, we need to evaluate the cost of a given
parameter set. The cost is evaluated by running a neuromus-
cular physics simulation (MATLAB Simulink/SimMechanics
R2014b, ode15s) with the given parameter set and assessing
the resulting running behavior. For example, to find the
neural control parameters, w, for different running speeds
(Sec. III-A), we run a physics simulation to calculate the
cost

J(w)=


c1 ‖vavg − vtgt‖+ CE , if steady run (2a)
c0 + c1tDS + ‖vavg − vtgt‖ , if double stance (2b)
2c0 + dsteady, if non-steady (2c)
3c0 − xfall, if fall, (2d)

where xfall is the distance the model runs until falling,
dsteady is the measure of steady locomotion, tDS is the
time duration of double support phase, vavg is the average
velocity during steady running, CE is the metabolic cost
of transport, and c1 = 100 is a constant coefficient used
to emphasize specific terms. (Details of calculating dsteady
and CE are explained in [5].) To impose some robustness
on the controller, we run the simulations on a terrain that
has a 10 m section of maximum height disturbances of
±2 cm (Fig. 2). The c0 = 103 is large enough to assure
Eq. (2a)<(2b)<(2c)<(2d); where Eq. (2d) encourages the
model not to fall down, Eq. (2c) induces steady locomotion,
and Eq. (2b) searches for running opposed to walking. Once
the model successfully produces steady running, CMA-ES
searches for energy efficient running at the target speed by
minimizing Eq. (2a). (We find that seeding the optimization
with a parameter set that allows the model to run 2∼3 steps
and including Eq. (2b) in the cost are crucial for searching
successful running behaviors.)

III. RESULTS

A. Reflex-Based Neuromuscular Running Controller

We first found successful running at 3.0 ms−1 by min-
imizing the cost Eq. (2) with vtgt = 3.0 ms−1. Then we
search the range of running speeds the model can generate
by changing vtgt by ±0.1 ms−1. As a result, we found
the parameter sets of w that generate steady running at
2.35∼4.00 ms−1 (blue line of Fig. 4-(a)).

The range of running speeds of the model is much less
than that of real humans, where normal humans can run
in place and sprinters can run at 10 ms−1. The limiting
factor for lower speeds is not clear. One possible factor is
instability, since it is understood that it is harder to maintain
dynamic stability at slower speeds in walking [18]. Although
the neural controller includes a reactive foot planner which
is supposed to overcome such instability, the current muscu-
loskeletal attachments (which are set considering the range
of motion in walking) may not be appropriate for running
and prevent the controller from fully using its capability. In-
appropriate musculoskeletal attachments may induce MTUs
to leave their normal working states (e.g. an MTU may
overextend or become slack). One evidence that supports
this hypothesis of inappropriate attachments is that when the
muscles are in use most of them are fully stimulated. (The
muscle stimulation timings match that of human running
and the full saturation is not due to antagonists fighting
each other.) Similar joint torques are generated with much
less muscle stimulations in human running, indicating the
MTUs of the model are in ineffective states. Inappropriate
musculoskeletal attachments may also be limiting faster
running, since MTUs cannot produce enough joint torques.
Another factor that may be preventing the model from faster
running is the simplified upper body. For example, swinging
the arms can contribute about 10% in generating vertical
propulsion [20]. (With a version of the neural controller and
a different musculoskeletal model, [11] have demonstrated
running at 3.0∼5.0 ms−1.)

Fig. 3 shows the kinematics and dynamics of the model
running at 2.4, 3.2 and 3.9 ms−1 along with those data of
human running at 3.2 and 4.0 ms−1. The model runs with
midfoot strikes (cf. rearfoot strike and forefoot strike). The
overall trend of the kinematic and dynamic data agrees with
that of human running; the direction of the angles and the
joint torques mostly match across the gait cycle, and the
vertical GRF has the characteristic single hump. The main
differences are observed during the mid swing phase, where
the knee angle shows a double hump and the ankle does
not extend as much as that of humans. Again, we speculate
the inappropriate musculoskeletal attachments as the main
factor for these discrepancies. It seems essential to adjust
the musculoskeletal model for better prediction of running
data, including the muscle activations. For the remaining
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Fig. 3. Running data of the model and humans at different speeds. The kinematic and dynamic data during running are shown in the plot. Positive angles
indicate forward trunk (pelvis for humans) lean, hip flexion, knee flexion, and ankle dorsiflexion, where positive joint torques indicate hip extension, knee
extension, and ankle plantarflexion. Human running data are those reported in [21] and [22] for 3.2 and 4.0 ms−1, respectively.

sections, we focus on the speed control of the model instead
of comparing its behaviors with that of humans.

B. Linear Speed Adaptation Policy

Instead of using different sets of the control parameters w,
we investigate if the different running speeds can be realized
with the linear policy Eq. (1). To find a good policy for
adapting to different speeds and making speed changes, we
optimize K that minimizes Jacc(K) + Jdec(K), where

Jacc(K) =
−c0 + ∆tacc, if speed change (3a)∥∥vavg,1 − vacctgt,1

∥∥+∥∥vavg,2 − vacctgt,2

∥∥ , if steady run (3b)
...

... . (3c)

Jdec(K) is the same with vdectgt1, vdectgt2 and ∆tdec. Eq. (3c)
represents Eq. (2b∼d), and Eq. (3a) is calculated when the
speed change is successfully made (i.e.

∥∥vavg,i − vacctgt,i

∥∥ <

0.05 for both i = 1, 2). The target values are set as vacctgt,1 =
vdectgt,2 = 2.4 ms−1 and vacctgt,2 = vdectgt,1 = 3.9 ms−1. We run
two simulations to calculate each Jacc(K) and Jdec(K).

By minimizing the cost Eq. (3) we obtain a linear speed
adaptation policy K that allows the model to run at dif-
ferent speeds between 2.4∼3.9 ms−1 (black line of Fig. 4-
(a)). Interestingly, the relationship between the commanded
velocity, vtgt, and the actual running speed shows a S-shape,
indicating that including a nonlinear mapping such as w =

K·
[

1
f(vtgt)

]
will produce better speed adaptation. Fig. 4-(b)

shows the step lengths of running at different speeds. (The
step lengths of human running are plotted for comparison.)
Since CMA-ES does not guarantee global optimum (as other
nonlinear optimizers), some of the optimization solutions are
different types of local minima, generating inconsistent step
length–velocity relationship (blue line). On the other hand,
the running behaviors generated by the linear speed adap-
tation policy K have consistent properties across different
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Fig. 4. Relationships between the target velocities, the actual velocities
and the step lengths. Step lengths of human running across different running
speeds are from [23].

speeds. This reveals an advantage of using a unified policy
of generating different behaviors comparing to using a look-
up table of different sets of parameters found by independent
optimization trials.

The linear speed adaptation policy can also be used
for inducing speed changes (Fig. 5). The speed changes
between 2.4 and 3.9 ms−1 are realized by changing the
target velocity, vtgt, instantly from one to the other (red
lines). The average acceleration and deceleration are 0.18 and
-0.26 ms−2, respectively (Table I), which are much slower
comparing to humans. However, we find that the linear speed
adaptation policy can adapt to faster speed changes induced
by a separate speed changing strategy. For instance, when
faster speed changes happen by external pushes on the trunk,
the model makes faster acceleration and deceleration (gray
lines). Such observation motivated us to investigate explicit
speed changing strategies that run independently with the
speed adaptation policy.

TABLE I
SPEED CHANGES WITH DIFFERENT STRATEGIES

no ctrl ext push ∆τh ∆τk ∆τa ∆αtgt ∆θtgt

accel

∆ci
(· /ms−1)

- - -18 Nm 8 Nm 10 Nm 3 deg 28 deg

2.4 → 3.9
(ms−2)

0.18 0.96 0.25 0.19 0.23 0.27 0.35

decel

∆ci
(· /ms−1)

- - -7 Nm 5 Nm 8 Nm -3 deg 21 deg

3.9 → 2.4
(ms−2)

-0.26 -0.86 -0.33 (-0.52) -0.31 (-0.43) -0.37

(accel: acceleration, decel: deceleration, ctrl: control, ext: external,
positive joint torques indicate extension torques)
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(b) Deceleration
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Fig. 5. Acceleration and deceleration induced by the linear speed adaptation
policy. Speed changes facilitated by external pushes (ext push) are also
plotted.

C. Speed Changing Strategies

In this section, we investigate the speed changing strategies
explained in Sec. II-B.3. We optimize the intensities of each
strategy ∆ci (i = 1, 2, · · · , 5) separately for acceleration
and deceleration by minimizing Jacc(∆ci) and Jdec(∆ci) of
Eq. (3), respectively. (Note that the speed adaptation policy,
K, is not changed from that identified in Sec. III-B.) The
results are shown in Table I. The ∆ci values should be larger
than zero to be in line with the functional purpose of each
speed changing strategy. For example, we expected ∆c1 =
∆τh > 0 (Nm)/(ms−1) to facilitate speed changes, since
it adds hip extension torque during stance for acceleration
and reduces it for deceleration. However, the optimized
∆c1 = ∆τh and ∆c4 = ∆αtgt have negative values. We
speculate that positive ∆τh modulates the trunk lean angle in
the direction that hinders speed changes. For ∆c4 = ∆αtgt,
the optimization found a special case where the model makes
an abrupt deceleration by first increasing the running speed.
Deceleration made by ∆c2 = ∆τk also is a similar case; the
model first accelerates by increasing the leg propulsion and
then loses stability of the stance leg (i.e. instantaneous large
knee flexion during stance) that causes abrupt deceleration.
These strategies are specialized for the given scenario and are
difficult to be generalized for different speed changes. (Con-
straints that prevents these special scenarios should be added
in the optimization routine to obtain reliable strategies.)
Other strategies (∆c1,3,5) show consistent speed changes.
Among them, the trunk lean modulation strategy (∆c5 =
∆θtgt) makes the largest acceleration and deceleration of
0.35 and -0.37 ms−1, respectively. This strategy generalizes
for different target velocity profiles (Fig. 6).
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Fig. 6. Speed control of the neuromuscular human running model. The
plot shows that the model can track target velocities arbitrarily changing
every 6 second. The model used the speed changing strategy of modulating
the trunk lean for both acceleration and deceleration.

IV. SUMMARY AND FUTURE DIRECTIONS
Better control models of human locomotion can impact

the field of robotics. In this contribution, we investigated the
capability of a previously proposed neuromuscular human
locomotion model [5] in controlling running speeds. With
different sets of control parameters, the sagittal plane ver-
sion of the model was able to generate steady running at
different speeds from 2.4 to 4.0 ms−1. Such steady running
behaviors could also be generated by changing only the target
velocity with a linear speed adaptation policy. Changing the
target velocity of the speed adaptation policy also induced
speed changes, although the changes are relatively slow
(average acceleration and deceleration of 0.18 and -0.26
ms−2, respectively). We investigated simple strategies that
can expedite these speed changes. Among the strategies
we explored, modulating the trunk lean showed the best
performance (average acceleration and deceleration of 0.35
and -0.37 ms−2, respectively).

The proposed speed controller is not complete in many
aspects. First, the original neuromuscular model should be
updated to better predict the human running behaviors. This
includes revising the musculoskeletal properties and may also
involve introducing more functional control modules specific
for running. Second, the linear speed control policy can be
further polished. For instance, we can analyze the neural
control parameters and select the parameters essential for
speed control as in the previous study [13]. Lastly, the speed
changing strategies we proposed are immature. For example,
some strategies directly modulate joint torques instead of
doing so through the muscle actuators. In addition, we have
not investigated the effect of combining the strategies, which
may enhance the speed changing performance by much. We
plan to solve these limitations which would lead us to a better
human locomotion control model.
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