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Abstract— The neural controller that generates human loco-
motion can currently not be measured directly, and researchers
often resort to forward dynamic simulations of the human
neuromuscular system to propose and test different controller
architectures. However, most of these models are restricted to
locomotion in the sagittal plane, which limits the ability to study
and compare proposed neural controls for 3D-related motions.
Here we generalize a previously identified reflex control model
for sagittal plane walking to 3D locomotion. The generalization
includes additional degrees of freedom at the hips in the lateral
plane, their actuation and control by hip abductor and adductor
muscles, and 3D compliant ground contact dynamics. The
resulting 3D model of human locomotion generates normal
walking while producing human-like ground reaction forces
and moments, indicating that the proposed neural controller
based on muscle reflexes generalizes well to 3D locomotion.

I. INTRODUCTION

The neural controller that generates locomotion behaviors
in humans can currently not be measured directly. As a
result, many researchers resort to forward dynamic simu-
lations of the human neuromuscular system to propose and
test different controller architectures [1]–[6]. These studies
have demonstrated that different architectures can generate
walking or running behaviors with more or less human-
like kinematics, kinetics and muscle activation patterns.
Examples include models proposed based on the observation
of central pattern generators (CPG) in neurophysiological
studies [1]–[3], [6], [7]; on the equilibrium point hypothesis
[4], [8]; and on muscle reflexes [5], [9]. However, among all
the different models, only a few based on CPG control have
been generalized to three-dimensional locomotion [3], which
limits the ability to study and compare alternative neural
controllers of 3D-related motions (including for instance
body yaw and roll, and turning). Such a comparison would
help to identify which of the proposed alternatives is more
likely to govern human neural control.

Here we seek to generalize one of the alternative neural
controllers to three-dimensional locomotion. In a previous
study, we identified a sagittal plane model of walking control
following the process of embedding principles of legged
dynamics and control within muscle reflexes [5], [10]. We
present the preliminary extension of this model into a three-
dimensional one. The model includes an extended mechan-
ical system with additional degrees of freedom (DOFs)
at the hips in the lateral plane, added hip abductor and
adductor muscles (section II), and 3D compliant contact
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models (section III). We also extend the previous model’s
trunk balance control to include the lateral degrees of free-
dom (section IV). Our preliminary results show that the
generalized 3D model successfully generates walking while
producing human-like ground reaction forces (GRFs) and
moments (GRMs) (section V). The results indicate that the
proposed neural controller based on muscle reflexes well
generalizes to 3D locomotion, and we discuss our plans to
study with this model human neural control beyond steady
walking (section VI).

II. HUMAN MUSCULOSKELETAL MODEL
A. Musculoskeletal Model

The 3D musculoskeletal system represents a human male
with height h=180cm and body mass m=80kg by 7 segments
connected by 8 internal DOFs, and driven by 18 muscle-
tendon units (MTUs) (Fig. 1-a and b). The seven segments
include trunk (which models the whole upper body), thighs,
shanks and feet. These segments are connected by hip, knee
and ankle revolute joints, where each hip joint has DOFs
in both the sagittal and coronal planes; the remaining joints
have DOFs only in the sagittal plane. The joints are actuated
by nine Hill-type muscles per leg (Fig. 1-c, [11]). Seven
muscles produce forces in the sagittal plane (soleus, SOL;
tibialis anterior, TA; gastrocnemius, GAS; vastus, VAS; ham-
string group, HAM; gluteus maximus, GLU; and grouped hip
flexors, HFL) and the other two muscles produce forces in
the lateral plane (grouped hip abductors, HAB; and grouped
hip adductors, HAD). Each muscle generates a joint torque
τm,j = Fm rm(ϕj) at the joint j it spans, where rm(ϕj)
models constant moment arm r0 for hip joints and variable
moment arms r0cos(ϕ− ϕmax) for knee joints.

The detailed values of the segments and muscles are listed
in Tab. I and Tab. II, respectively. The segment parameters
are the segment length dS , the distance dJ between the distal
part of the segment and its proximal joint, the distance dG
between the distal part and its center of mass (COM), the
segment mass mS , and the moments of inertia Θ around
each principal axis. All length and distance parameters (dS ,
dJ and dG) are defined by three values l, w and h which
correspond to the lengths in each principal axis (Fig. 1-a)
(only non-zero values are shown in Tab. I). The muscle
parameters are the maximum isometric force Fmax, the max-
imum contraction speed vmax, the optimal fiber length lopt,
and the tendon slack length lslack. The muscle attachment
parameters are the moment arm r0, the attachment reference
angles ϕmax and ϕref , and the pennation angle coefficient ρ.
All segment parameters and muscle parameters are estimated
from reported physiological data [4], [12]–[14].
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Fig. 1. Human musculoskeletal model. (a) The model consists of 7 segments, 8 DOF (2 at each hip), and 4 lumped compliant contact models (blue
circles). (b) 9 muscle tendon units (MTUs) are attached to the skeletal system, 7 of which act in the sagittal plane while 2 act in the lateral (coronal) plane.
(c) The MTU model consists of a contractile element (CE), parallel elastic element (PE), series elastic element (SE), and buffer elastic element (BE). The
force-length and force-velocity relationships of the CE are sketched in the bottom.

B. Contact Model

The musculoskeletal model interacts with the ground via
four lumped, compliant contact models. The contact models
are located at the heel and ball of each foot, each computing
GRFs in the normal and tangential directions and GRMs
about the normal axis. To explain the implementation of
the three dimensional contact models, we briefly cover the
planar point contact model of [5] and then extend it to three
dimensions.

In the planar point contact model, the vertical GRF is
given by Fz = kzfcz(∆zc)fcż(żc), where kz is the stiffness
coefficient, ∆zc and żc are ground penetration depth and
velocity, and fcz and fcż are piecewise linear functions
(Fig. 2-a and b). The parameters kz and żc,M of the functions
fcz and fcż define the contact stiffness and relaxation speed.
We use kz = 81.5kNm−1 and żc,M = 3cms−1. (Note
that we also model joint limits similarly to the vertical
point contact, exerting stopping torques instead of GRFs.)
The horizontal GRF is modeled as either sliding or stiction
friction (Fig. 2-a). A contact starts at sliding mode, switches
to stiction mode if ẋc < ẋst = 1cms−1, and switches back
to sliding mode if |Fx,st| > µst |Fz|, where µst is set to 0.9.
Sliding friction acts opposite to the sliding direction żc by
|Fx,sl| = µsl |Fz|, where µsl = 0.8, and the stiction friction
is calculated in the same way as the vertical GRF assuming
kx = 8.2kNm−1 and ẋc,M = 3cms−1.

The point-contact model is extended to a three dimensional
model by calculating the normal and tangential GRFs based

TABLE I
SEGMENT PARAMETERS.

foot shank thigh trunk
dS(cm) 20(l), 8(h) 46(h) 46(h) 80(h), 10(w)
dJ (cm) 16(l), 8(h) - - 20(w)
dG(cm) 13(l), 6(h) 28(h) 28(h) 35(h)
mS(kg) 1.25 3.5 8.5 53.5
Θx(kgm2) 0.0007 0.05 0.15 4.0
Θy(kgm2) 0.005 0.05 0.15 2.5
Θz(kgm2) 0.005 0.003 0.03 1.0

on the encountered surface slope. For instance, Fig. 2-c
shows a rigid body with point contact models at each edge
colliding with and sliding down a rough surface. To account
for friction moments generated by multiple contact surfaces
on the human foot, we lump two virtual point-contacts into
one model (Fig. 2-d). The lumped contact models of the ball
and heel mimic two point-contacts that are 10cm and 5cm
apart in the lateral plane, assuming that the normal load is
equally distributed between these two virtual point-contacts.

C. Simulation Environment

We implemented the musculoskeletal model in MatLab
Simulink/SimMechanics (R2012a) using the ode15s solver.

III. NEURAL CONTROLLER EXTENSION

For 3D locomotion, we extend the previously developed
muscle reflex controller in a simple way. The extension does
not change any control for the sagittal plane muscles [5], but
only focuses on the control of the muscles that actuate the
lateral DOFs of the hips.

A. Neural Control for Lateral Stability

The control of the hip abductors (HAB) and adductors
(HAD) is different between stance and swing. In stance, the

TABLE II
MUSCLE PARAMETERS.

SOL TA GAS VAS HAM GLU HFL HAB HAD
Fmax(N) 4000 800 1500 6000 3000 1500 2000 3000 4500
vmax(lopts−1) 6 12 12 12 12 12 12 12 12
lopt(cm) 4 6 5 8 10 11 11 9 10
lslack(cm) 26 24 40 23 31 13 10 7 18

r0(cm) 5 4 5(a) 6 5(k) 10 10 6 3
5(k) 8(h)

ϕmax(deg) 110 80 110(a) 165 180(k) - - - -
140(k) -(h)

ϕref (deg) 80 110 80(a) 125 180(k) 150 180 10 15
165(k) 155(h)

ρ 0.5 0.7 0.7(a) 0.7 0.7(k) 0.5 0.5 0.7 1
0.7(k) 0.7(h)

7464



(a)

(b)

(d)

(c)

0 Δzc

fcz

0 zc
.

fcz.

-zc,M
.

Δzc

Δxc
xc
. zc
.

sliding stiction

y

x

5cm

10cm

Fig. 2. Contact model. (a) A point-contact model (light blue circle)
generates normal and horizontal GRFs. The horizontal GRF is generated
assuming either sliding or stiction friction. (b) The normal GRF depends
on the ground penetration ∆zc and its velocity żc. (c) Demonstration of
two 3D point-contact models attached to a rigid body colliding and sliding
down a rough surface. (d) In the human model, two point-contact models
representing lateral spread of the human foot at the ball and heel are lumped
together in one model assuming the same normal force (blue circle). The
virtual point-contact models of the ball and heel are 10cm and 5cm apart.

muscle stimulations are generated based on a desired torque
that is required to stabilize the trunk in the upright position.
Specifically, the desired torque τdesH,L of the hip muscles in the
lateral plane has two components: a proportional-derivative
(PD) feedback component and a feedforward compensation
of the counter moment on the trunk induced by the contralat-
eral swing leg. The components are weighted by the load the
stance leg is bearing. The resulting desired torque is

τdesH,L = F ipsileg (ts)(−pH,LθT,L(ts)−dH,L θ̇T,L(ts)+τ contraH,L )
(1)

where F ipsileg is the load the leg is bearing, pH,L and dH,L
are the PD gains, θT,L is the trunk’s lateral lean angle with
respect to the vertical axis, and τ contraH,L is the desired torque
of the contralateral swing leg. The time ts indicates a delay
of 5ms, which models the neural transmission delay.

In swing, the desired hip torque in the lateral direction is
generated based on a desired angle

θdesH,L = cθ0 + cd dCOM,L + cv vCOM,L, (2)

which predicts lateral foot placements required for maintain-
ing gait stability [15]. Here, the parameters cθ0, cd and cv
are constant coefficients, and dCOM,L and vCOM,L are the
lateral distance and velocity of the COM measured relative
to the stance foot. The desired torque is calculated according
to

τdesH,L = −pH,L (θH,L(ts)− θdesH,L)− dH,L θ̇H,L(ts) (3)

where θdesH,L and θ̇H,L are the angle and angular velocity of
the hip joint.

For both, stance and swing, the desired torque (eq. 1 and
3) is converted into muscle stimulation signals

SHAB = S0,HAB + τdesH,L+
/(Fmax,HAB r0,HAB) (4)

SHAD = S0,HAD + τdesH,L−/(Fmax,HAD r0,HAD) (5)

where S0,i is a prestimulation, Fmax and r0 are the maxi-
mum isometric forces and moment arms of each muscle, and
the subscripts +/- indicate positive/negative values (τdesH,L is
positive for abduction and negative for adduction). The factor
Fmax,i r0,i scales the desired torque to muscle stimulation.

B. Parameter Optimization for Walking

To test if the proposing 3D neuromuscular system gen-
erates steady walking patterns, we use optimization on the
control parameters. In particular, we use covariance matrix
adaptation evolution strategy (CMA-ES) [16], a genetic al-
gorithm for solving non-linear and non-convex optimization
problems. We optimize over 48 parameters (all of the 30
sagittal plane and 9 lateral plane control parameters, and 9
initial conditions) to minimize the cost function

J =


2cL − twalk, fall
cL + dsteady, non-steady walk
c1 |vavg − vtgt|+ c2 CE , steady walk

(6)

where twalk is the walking time until the model falls (if ever),
dsteady is a measure for steady walk, vavg and vtgt are the
average and target walking speeds, and CE is the energetic
cost. c1, c2, and cL are empirically determined constants
(10, 1, and 100, respectively). A step is assumed a steady
step if the positions of every segments’ edges do not change
significantly relative to the touch-down position between
subsequent heel-strikes. Specifically, we define dsteady ≤
3cm as a criterion for a steady step, where dsteady is
the sum of the differences of the relative positions of the
edges. We assume the model to be in steady walking if the
criterion is fulfilled for six consecutive steps (which proved
to be a reliable indicator of steady walking in extensive
tests). If a simulation achieves steady walking, the cost
function is determined by the horizontal walking speed
vtgt = [vx,tgt, vy,tgt]

T
= [1.3, 0]

T
ms−1 and the energetic

cost CE = EM/(m d), where EM is the total metabolic
energy consumed by all muscles estimated from a muscle
energy model [17], m is the body mass, and d is the traveled
distance.

IV. RESULTS

The parameter optimization finds steady walking of the
3D neuromuscular model at a normal speed of 1.3ms−1;
moreover, the resulting patterns of the GRFs and the normal
GRM are similar to those observed in human walking (Fig. 3-
a and b). The vertical GRF (GRFz) shows the characteris-
tic “double-hump” pattern, the progressional GRF (GRFx)
switches from negative to positive values, the lateral GRF
(GRFy) mostly pushes medially, and the vertical ground reac-
tion moment switches from external to internal compensating
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Fig. 3. Walking of the 3D neuromuscular human model. (a) The model
walks at normal speed of 1.3ms−1. Snapshots show the model at every
500ms, and lines on the ground are one meter apart. (b) The GRFs
and GRM generated by the model (solid lines) qualitatively agree with
the corresponding patterns of human walking (dotted lines, [18], [19]).
The GRFs are normalized to body weight (bw). For the GRM, external
rotation is defined as rotating the trunk counterclockwise/clockwise around
the right/left stance leg.

for the angular momentum induced by swinging the leg [18],
[19].

The model shows exaggerated GRF and GRM during the
early stance phase, because it consists of rigid segments that
generate high impact during heel strike. The magnitude of
the GRM is comparable to that of human walking. While
the magnitude of the GRM in humans is smaller during
normal walking, it approaches the model-predicted value
when swinging the arms in the opposite phase [19].

V. CONCLUSION

The 3D model successfully generates walking while pro-
ducing human-like ground reaction forces (GRFs) and mo-
ments (GRMs). The results indicate that the proposed neural
controller based on muscle reflexes generalizes well to 3D
locomotion, opening up the opportunity to study human
neural control beyond steady walking with this model. We
plan to further detail the comparison to human walking by
analyzing the joint kinematics, kinetics and muscle activation
patterns, and to use this model to study 3D-relevant locomo-
tion control.

On the other hand, the musculo-skeletal extensions that
we used in the model were based on simplified assumptions
about how the hip and foot are actuated in humans. For
instance, we represented the hip motion with two decoupled
DOFs which are actuated by separate muscles. However, in
humans, the hip joints are spherical and hip muscles actuate
multiple DOFs. We plan to investigate in simulation neural
control strategies for these coupled joints and muscles with
the goal of gaining insights into the functional advantages
that these couplings provide.
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