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Abstract— Although current humanoid controllers can rely
on inverse kinematics or dynamics of the full humanoid system,
powered prosthetic legs or assistive devices cannot, because they
do not have access to the full states of the human system. This
limitation creates the need for alternative control strategies.
One strategy is to embed fundamental knowledge about legged
dynamics and control in local feedback. In a previous paper,
we have developed a control model of human locomotion which
relies mostly on local feedback. The model can robustly walk at
normal walking speeds. Here we extend this model to adapt to
a wide range of walking speeds and to generate corresponding
speed transitions. We use optimization of the model’s control
parameters and find key parameters responsible for steady
walking between 0.8ms−1 and 1.8ms−1, covering the range of
speed at which humans normally walk. Using these parameters,
we demonstrate speed transitions between slow and fast walk-
ing. In addition, we discuss how the speed-dependent changes
of the identified control parameters connect to biped walking
dynamics, and suggest how these changes can be integrated in
local feedback control.

I. INTRODUCTION

Although current humanoid controllers can rely on in-
verse kinematics or dynamics of the full humanoid system
[1]–[3], powered assistive devices [4]–[8] cannot, because
they do not have access to the full states of the human
system. Controllers that use mostly local information are
indispensable for these systems. In line with this requirement,
neuroscientific experiments [9]–[11] and simulation models
[12]–[15] have shown that in animals and humans motor
control of legged locomotion can largely rely on local
sensory feedback control. For instance, decerebrate cats who
have no connection between the central processing in the
brain and the muscles in the legs, can walk and run on
treadmills autonomously adapting to locomotion speed [16].

In a previous work [17], we have developed a neuromus-
cular model of human locomotion which uses mostly local
sensory feedback to control walking. Based on this muscle-
reflex control, the model adapts its locomotion pattern to
variable ground including up and down slopes. Although
this neuromuscular control promises novel control strategies
for powered prosthetic legs [5], [6], the model’s control
requires several extensions to render it viable for complex
robotic systems. First, the model is planar and does not
account for frontal plane motion. Second, the model has been
tuned for a single walking speed of 1.3ms−1 equal to the
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preferred walking speed in humans; it currently does not have
a controller that regulate different walking speeds.

In this paper, we focus on extending the neuromuscular
control to adapt to a wide range of walking speeds and to
generate corresponding speed transitions. Humans normally
walk at speeds ranging from about 0.8ms−1 to 1.8ms−1

[18]. We first optimize for this range of speeds over all
control parameters of the current neuromuscular model using
the covariance matrix adaptation evolution strategy (CMA-
ES) [19] (section II), and find nine key parameters for steady
state walking at different speeds (section III). The nine
parameters fall into three classes which account for trunk
balance, stance behavior, and swing generation. In a second
step, we optimize over these nine parameters to study which
of these classes are critical to generate speed transitions
between slow and fast walking (section IV). Our results show
that to control large speed transitions (between 0.8ms−1

and 1.8ms−1) about two to five steps are required and
all three classes contribute equally. We discuss preliminary
architectures that embed the generation of speed transitions
in the neuromuscular control.

II. HUMAN MODEL AND ITS OPTIMIZATION

In previous work, we have identified a forward-dynamic
human model of neuromuscular control that generates
steady-state walking behavior with human-like kinemat-
ics, kinetics, and muscle activations (Fig. 1). (Details of
this model can be found in [17]; we here summarize its
main components.) The model represents the human muscu-
loskeletal system as a planar, seven segment system modeling
the trunk as well as the thighs, shanks and feet. The segments
are connected by revolute joints forming the hip, knee and
ankle. The joints are actuated by seven Hill-type muscle
models per leg, representing major leg muscles in human
walking (soleus, SOL; gastrocnemius, GAS; tibialis anterior,
TA; vastii group, VAS; hamstring group, HAM; gluteus
maximus, GLU; and grouped hip flexors, HFL; Fig. 1).
The muscle models consist of contractile elements, who
take muscle stimulation signals Sm from 0% to 100% as
input, combined with series and parallel elasticities. Each
muscle’s force translates into a joint torque contribution
τm,j = Fm · rm(ϕj) at the joints j it spans, using variable
moment arms rm(ϕj) that mimic the physiological moment
arms observed for these muscles and joints.

The muscle stimulations Sm are generated by the model’s
sensory feedback control. The control consists of separate
stance and swing phase muscle reflexes which are based on
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Fig. 1. Neuromuscular human walking model. The model has seven
segments driven by 14 muscles. Segment masses and inertias reflect human
data. Muscles are modeled as Hill-type muscles with force-length and
force-velocity relationships, and include series and parallel springs. The
control is purely reflexive. It does not require central pattern generators or
precomputed joint trajectories. Key muscle reflexes active in swing (shown
for left leg) are the positive length feedback (L+) of tibialis anterior (TA)
lifting the foot, L+ of the hip flexor and its suppression by positive force
feedback (F+) of the biarticular hamstring (HAM) and the glutei (GLU).
Key reflexes in stance (right leg) are F+ of the leg extensors soleus (SOL),
gastrocmenius (GAS) and vastii (VAS), negative force feedback (F−) from
SOL to TA suppressing the TA L+, and the trunk balance control around
a reference lean from the vertical that activates either GLU and HAM or
HFL based on a proportional-derivative signal of the forward lean.

sensory signals measuring the muscle state (mostly homony-
mous, positive force or length feedbacks, F+ or L+, Fig. 1).
To reflect neural transport delays, these signals are time-
delayed, as well as gained, and fed back into sum blocks that
model alpha motoneurons and produce the muscle stimula-
tions. The sensory feedbacks used in the model have been
synthesized element by element from translating a bipedal
spring-mass model [20] into an articulated one, embedding
key principles of legged dynamics and control in sensory
feedback control. (See [17] for details on this model. Note
that in the current implementation, this model has an arched
foot to resemble the human triangular foot geometry. The
arched foot’s weight and inertia match that of the rigid foot
segment reported in [17]).

While this model generates human-like walking and tol-
erate ground disturbances, it does not have an explicit
controller for speed changes. To identify such a controller,
we use control parameter optimization based on the CMA-ES
[19]. Our general implementation of the CMA-ES samples
a population of 16 solutions from the space of control
parameters that we consider according to a multivariate
normal distribution, evaluates these solutions based on a cost
function, and uses the 8 solutions with the lowest cost to
reshape the covariance matrix of the normal distribution. For
each optimization trial, we optimize over 300 generations.
In a first optimization stage, we identify the key control
parameters for steady state walking at different speeds from
all control parameters that the model has (section III). In the

Fig. 2. Optimization of steady walking at different speeds in the model.
Shown are (a) mean±s.d. for the optimization results of the energetic cost
with all the parameters (solid line, n = 5) and only nine key parameters
(dotted line, n = 1), and (b) the resulting step length and frequency.

second, we optimize over the identified key parameters to
elicit speed transitions and understand the underlying con-
trol strategies (section IV). Between these two optimization
stages the actual cost function and optimization trial setup
change as will be explained in sections III and IV.

III. KEY CONTROL PARAMETERS FOR STEADY
WALKING AT DIFFERENT SPEEDS

A. Steady Walking Optimization

We divide the speed range from slow to fast walking
into six levels ranging from 0.8ms−1 to 1.8ms−1 with
0.2ms−1 increments. For each target speed, optimization
trials start from steady walking at 1.3ms−1 (for which we
have hand-tuned control parameters), alter the full set of
control parameters once, wait until the model again settles
into steady walking, and then evaluate the cost function

J = 10 |ẋavg − ẋtgt|+ P + CE , (1)

where ẋtgt and ẋavg are the target speed and the average
walking speed, P is a pain term that accounts for joint over-
extensions, and CE is the energetic cost. We calculate P
as the sum of torques created by the soft mechanical joint
limits in the neuromuscular model, which engage outside of
the normal joint ranges (70◦ < ϕa < 130◦, ϕk < 175◦, and
ϕh < 230◦ for the ankle, knee and hip, respectively [17]). We
compute the energetic cost as CE = EM/(m · xd), where
m is the body mass, xd is the distance traveled, and EM

is the total metabolic energy. EM is estimated as the sum
of metabolic energies expended by all muscles, using the
muscle energy model of [21]. We assume that an individual
simulation has achieved steady walking as soon as the
Cartesian positions of the joints do not change significantly
relative to the touch-down position between subsequent heel-
strikes (sum of differences ≤ 3cm proved a reliable indicator
of steady walking in extensive test simulations; note that

512



Fig. 3. Control parameter speed trends. For the full parameter optimization, the mean±s.d. (n = 5) are shown for (a) GSOLTA, (b) GHAM , and (c)
θref . Dotted lines show the value which deviates least from the mean±s.d. GSOLTA has no trend, GHAM has a weak trend, and θref shows a clear
trend. In (d), all parameters with a trend are sorted according to their trend value s. Small values indicate strong trends.

if no steady state is achieved, the simulation is repeated
with a sample redrawn from the search space). For the three
subsequent steady-state gait cycles, we compute the average
walking speed, pain and energetic cost to determine the cost
function J (Eq. 1). To reduce the effect of local minima, we
repeat the optimization five times for each target speed.

The cost function guarantees that the optimization seeks
walking solutions which achieve the target speeds while
avoiding unphysiological joint over-extensions and minimiz-
ing energetic effort. Both constraints are common in gait
optimization to identify human locomotion patterns [22].

B. Key Control Parameters

The optimization repeatedly finds steady walking for all
six target speeds from 0.8ms−1 to 1.8ms−1 with gait char-
acteristics similar to those of humans. Figure 2 shows the
resulting energetic cost (mean±s.d. over the five repetitions)
as well as the step length L and step frequency f as two
characteristic, speed-dependent parameters of human loco-
motion. The identified walking solutions show qualitative and
quantitative agreement with human experimental data. The
energetic cost shows the characteristic minimum of about
3Jkg−1m−1 around normal speeds of 1.2ms−1 to 1.4ms−1

[23] (Fig. 2a), and L and f increase with speed v = Lf
from 0.7m to 1m and 1.2Hz to 1.8Hz, respectively, where
the change of step length contributes more to speed increase
at lower walking speeds and vice versa [24] (Fig. 2b).

To extract key control parameters that influence walking
speed, we classify the identified control parameter changes
(Fig. 3). We first discard all parameters that do not show
a trend with speed. We assume that no trend exists for
a parameter if a single value can be found (indicated as
horizontal line in figure 3a) that lies within the identified
parameter range (mean±s.d.) at all speeds, where the means
and standard deviations are taken over the control parameter
solutions that the five repetitions of the optimization found.

In a second step, we select only those parameters with
a clear trend. For an indicator of the trend clarity, we
compare the average magnitude of the standard deviations to
difference in the smallest and largest mean parameter values,
s = stdavg/(maxmean−minmean). Figure 3b and 3c show
two examples for control parameters that both have a trend
but different values of s with the latter parameter showing a
much clearer trend than the former. Figure 3 lists all the 18
parameters that show a trend sorted by their s value. Several

groups of parameters exist that have similar s values. We
decide to drop control parameters with s > 0.33, focusing
on the first two groups (θref , GSOL, loff,HAM , ∆S, kp,
ϕk,off , and GHAMHFL).

In addition, we include two more control parameters with
weaker trends because they are closely related to the seven
selected ones. We include the d-gain kd of the trunk control
because it defines the trunk balance together with θref ,
the trunk reference lean, and kp, the p-gain of the trunk
control. Similarly, we include the gain kϕ that suppresses
the VAS activity to prevent knee overextension together with
the selected parameter ϕk,off , the start value of this VAS
suppression control.

The resulting nine control parameters and their trends
with walking speed are shown in Fig. 4. To ensure that we
do not miss out on critical control parameters, we repeat
the optimizations for all target speeds with the selected
nine parameters while keeping the remaining 21 param-
eters constant. The values for these constants are set to
(minmean+std+maxmean−std)/2, which deviates least from
all mean±s.d. (dotted lines in Fig. 3a,b). The results show
that the optimizations over the nine key control parameters
find similar walking solutions with consistent parameter
trends (dotted lines in Figs. 2 and 4).

C. Parameter Interpretation

The identified control parameters fall into three categories
centered around trunk balance, swing leg motion, and stance
leg behavior. The trunk parameters θref , kp and kd influ-
ence the muscle stimulations that the hip flexor (HFL) and
extensor muscles (GLU, HAM) get. This muscle stimulation
is determined mainly by the proportional-derivative terms
kp(θ − θref ) + kdθ̇, where θ and θ̇ are time delayed (∆t =
5ms) signals of the trunk angle and angular velocity. If
the sum is positive, the terms add to the stimulation of
the hip extensors GLU and HAM; for negative values, the
amount adds to the stimulation of the hip flexor HFL. The
trends in figure 4a suggest that trunk forward lean is a major
contributor to fast walking.

Intuition about the segment dynamics helps to understand
the contribution of trunk lean to fast walking (Fig. 5a).
Forward propulsion in legged locomotion can be created
either by lengthening the leg after midstance or by rotating
it about the hip. Hip rotation requires extension moments
at that joint which accelerate the trunk backward. Trunk
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Fig. 4. Trends of the nine key control parameters for steady walking. Parameters are categorized by function into (a) trunk balance, (b) stance behavior,
and (c) swing generation. Values are shown for the full optimization with all parameters (mean±s.d., n = 5, solid line) and for the repeated optimization
with only these nine key parameters (dotted line, n = 1). Panels on the right indicate corresponding feedback control paths.

forward lean compensates for these moments as gravity and
leg impacts create counter moments when the trunk’s center
of mass is located forward. As a result, faster walking can
be generated by increasing hip extension moments during
stance if the trunk leans more forward.

Although simulation studies on limit cycle walking robots
have identified that, for controlling speed, lengthening the
leg consumes more energy than leaning the trunk [25], this
strategy creates energy efficient speed changes as well in
our model (Fig. 4b). The identified stance parameter GSOL

influences ankle push-off. The stimulation of the major ankle
extensor muscle SOL is generated by positive feedback of
the muscle force, SSOL = S0 + GSOLFSOL, where FSOL

is the time delayed (∆t = 20ms) muscle force signal, S0 is
a small stimulation offset of 1%, and GSOL is the feedback
gain. Increasing the feedback gain results in a faster build-
up of ankle extension torque, which increases the push-off
toward the end of the stance.

The other two stance control parameters, kϕ and ϕk,off ,
belong to a proportional control that prevents knee overex-
tension by suppressing the major knee extensor muscle VAS
according to −kϕ(ϕk − ϕk,off )(ϕ̇k > 0), where ϕk and
ϕ̇ are time delayed (∆t = 10ms) sensory signals of the
knee angle and angular velocity, and ϕk,off is a threshold
below which no signal is generated. While the actual trend
of this control with speed is less clear, the increased hip and
ankle extension torques due to trunk lean and push-off tend
to overextend the knee (Fig. 5b), which the suppression of
VAS can compensate.

Finally, the three swing-leg control parameters ∆S ,
loff,HAM and GHAMHFL influence swing initiation and
termination (Fig. 4c). In the neuromuscular model, swing
is initiated during the double support phase in which the
hip muscles receive a stimulation offset that increases the

activity of HFL by ∆S and decreases that of GLU by the
same amount. The net effect is a forward propulsion of the
swing leg that, due to passive inertial coupling, also tends to
flex the knee (Fig. 5c). Thus increasing the single parameter
∆S suffices to account for accelerated swing motions in fast
walking.

The contribution of the other two swing control parameters
is less clear. Although HFL activity continues during swing,
it is modulated by feedback from other muscles. In particular,
the HFL stimulation is reduced by a negative feedback
of the HAM position, GHAMHFL [lCE,HAM − loff,HAM ],
where lCE,HAM is the time delayed (∆t = 5ms) signal of
HAM’s contractile element length, loff,HAM represents the
signal threshold of the HAM muscle spindle sensors, and
GHAMHFL is the feedback gain. This feedback contributes
to decelerating the thigh in forward motion, allowing the
shank to overtake the thigh and prepare the leg for landing.
The optimization finds this feedback shifted toward larger
threshold values for faster walking above 1.2ms−1. This shift
compensates for the shift in the coordinate system of the
HAM relative to the world frame that the trunk forward lean
introduces. Why this feedback also shifts its threshold value
toward slow speeds below 1.2ms−1 is not clear and requires
further analysis.

IV. CONTROLLED SPEED TRANSITIONS

The neuromuscular model is robust enough that speed
changes up to ±0.2ms−1 can be achieved by simply adjust-
ing the key control parameters for steady walking according
to their trends (Fig. 4). However, the previous optimization
did not account for generating speed transitions and this
simple adjustment strategy does not work for larger speed
transitions in general. In this section, we focus on the extreme
cases of speed transitions between 0.8ms−1 and 1.8ms−1 by
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Fig. 5. Segment dynamics in three phases of walking including (a) leg
loading, (b) midstance, and (c) swing initiation. Solid arrows denote active
torques exerted muscle. dashed arrows mark reaction torques. Fg and Fi

indicate trunk weight and impact force, θhip is the hip angle and τh/a
represents the active hip/ankle torque.

adopting temporary parameter changes during the transition
phase.

A. Speed Transition Optimization

To find the temporary parameter changes that can generate
large speed transitions from 0.8ms−1 to 1.8ms−1 and back,
we devise a second optimization that takes advantage of
the identified steady walking solutions. The optimization is
based on trials in which the model starts from one identified
steady walking solution with the control parameters set for
0.8ms−1 or 1.8ms−1 and then enters a transition period ∆pc

at the beginning of which the key control parameters are
changed to generate the speed transition. After the period
∆pc, the parameters are set for the steady walking solution
with 1.8ms−1 or 0.8ms−1 (Fig. 6). The transition period
∆pc is not fixed but part of the cost function,

J = 10 |ẋavg − ẋtgt|+ 10P∆st + CE,∆st

+nstep,∆st + nstep,∆pc, (2)

where |ẋavg − ẋtgt| is the difference between target speed
and average speed at steady walking after the speed transi-
tion, P∆st and CE,∆st account for the pain and energetic
cost terms during transition, nstep,∆pc is the number of
steps during which the transition parameters are used, and
nstep,∆st is the number of steps it takes to reach steady
walking with the new target speed. The cost function induces
speed transitions to the target speed while minimizing pain,
energetic cost, and the number of transition steps.

B. Speed Transitions between Slow and Fast Walking

We repeated the optimization of large speed transitions
five times for both slow to fast and fast to slow walking. In
the first case, the best solution accelerated from 0.8ms−1

to steady walking at 1.8ms−1 within four strides; in the
second case, the best solution takes only two strides to
decelerate from 1.8ms−1 down to 0.8ms−1. In both cases,
the transition period ∆pc lasted only one stride. Because
the transitions were generated between previously identified
steady walking solutions, we can control succeeding speed
transitions between fast and slow walking. For example,
figure 6 shows snapshots of the neuromuscular model in

Fig. 6. Controlled speed transitions between slow and fast walking. (a) The
neuromuscular model starts in steady walking with 1.8ms−1, switches to
slow walking at x = 3m, and reaches steady walking with 0.8ms−1 after
∆st. (b) Continued from (a), the return to fast walking with 1.8ms−1

is shown. ∆pc marks the transition interval with temporary parameter
deviations. Snapshots are taken every 200 ms.

200ms intervals during transitions from fast to slow walking
and back.

C. Potential Architecture for Speed Controller

The optimization results further show that three key con-
trol parameters clearly deviate during transition, but only
from slow to fast walking (Fig. 7). While the trunk ref-
erence lean θref is similar during and after transition, the
proportional and derivative gains, kp and kd, of the trunk
balance sharply increase during the transition stride (Fig. 7a).
This increase is required to stop the trunk around its new
reference lean after it gets accelerated forward due to the
large jump in θref . The reverse change of kp and kd is
not necessary during deceleration from fast to slow walking,
because the trunk returns to a near upright position against
the hip flexion torques created by the impact and gravity
(Fig. 5a). The deviation suggests either a simple speed
transition control that increases the trunk balance gains with
the change ∆θref of the reference lean, or a more complex
control that compensates for the asymmetric effects of leg
impact and gravity on trunk balance. Both alternatives can
be embedded with sensory feedbacks.

Connected to the large change in trunk lean, the gain
GSOL of the positive force feedback of the SOL sharply
drops during the transition stride from slow to fast walking.
The drop reduces the ankle extensor moment, which ensures
that knee overextension by exaggerated hip extension torques
is avoided during the stopping of the trunk (Fig. 5b). An
automated regulation of GSOL the SOL could originate
directly from the control that increases the gains of the trunk
balance. However, more careful analysis will be required
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Fig. 7. Parameters deviations during speed transitions. Speed trends of the
nine key parameters for steady walking (solid lines) (Fig. 4) are overlaid by
the respective values during speed transitions (dashed lines, mean±s.d., n =
5). The values for transitions 0.8ms−1 → 1.8ms−1 and 1.8ms−1 →
0.8ms−1 are plotted at v=1.1ms−1 and 1.5ms−1, respectively.

to clarify if such a control would compromise reactions to
other disturbances and to explore alternative implementa-
tions. (Note that the other two stance parameters did not
show a clear pattern that suggests controls.)

The three parameters of the swing control show either
similar values during and after transition (∆S) or do not
show a clear pattern that suggests controls. In particular,
lCE,HAM reached parameter values in the transition from
slow to fast walking which cancelled the feedback output
(no clear meaning for gain GHAMHFL), and the gain
GHAMHFL showed large variability in the transition from
fast to slow walking.

V. SUMMARY AND OUTLOOK

Controllers that use only local information are indispens-
able for powered artificial legs and assistive devices because
they do not have access to the full state of the human in the
loop. We extended a neuromuscular model of human locomo-
tion that uses only local sensory feedback to control walking,
and identified key control parameters to automate large speed
changes from slow to fast walking. Using these parameters,
we could generate speed transitions between slow walking
at 0.8ms−1 and fast walking at 1.8ms−1, well within the
speed range that humans normally use [18]. In addition, we
discussed how the trends of the identified control parameters
connect to biped walking dynamics and made preliminary
suggestions for automated integration of these changes in the
sensory feedback control. We plan to realize these feedbacks
in an integrated controller architecture in the model, and to
extend the control to gait initiation and stopping. In addition,
we plan to test our hypotheses about the sensory feedback
changes during transition in experiments with humans.
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